Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves

نویسندگان

  • Huiming Ning
  • Yuan Li
  • Ning Hu
  • Yanping Cao
  • Cheng Yan
  • Takesi Azuma
  • Xianghe Peng
  • Liangke Wu
  • Jinhua Li
  • Leilei Li
چکیده

The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m-2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%-73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Investigation into the Deep Drawing of Fiber-Metal Laminates based on Glass Fiber Reinforced Polypropylene

Abstract   Fiber-metal laminates (FMLs) are new type of composite materials which could improve defects of traditional composites in ductility, formability, impact and damage tolerance. Drawing behavior of a thermoplastic based FML was investigated consisting of glass-fiber reinforced polypropylene composite laminate and aluminum AA1200-O as the core and skin layers, respectively. The effects o...

متن کامل

Flexural Behavior of Fiber–Metal Laminates Reinforced with Surface-Functionalized Nanoclay

The effects of surface-functionalized Na+-montmorillonite nanoclay particles on the flexural behavior of E-glass fiber-reinforced aluminum (GLARE) laminates were investigated. The nanoclay particles were subjected to surface functionalization using 3-(trimethoxysilyl)propylamine to increase their compatibility with the epoxy matrix and improve their dispersion within the matrix. Expe...

متن کامل

Mixed Mode Fracture in Reinforced Concrete with Low Volume Fraction of Steel Fibers

An investigation into the mixed mode fracture of steel fiber reinforced concrete (SFRC)beams with one percent volume fraction of steel fiber is presented. A series of notched beams withdifferent notch depths and locations are tested under three-point bending. The test results for apparentfracture toughness, crack trajectories, and fracture energy are presented. The crack paths for SFRCand plain...

متن کامل

Fracture Toughness and Mechanical Properties of Aluminum Oxide Filled Chopped Strand Mat E-Glass Fiber Reinforced–Epoxy Composites

The knowledge of load bearing characteristics and failure of material is very important for mechanical engineers. Various metallic, non metallic and composite materials are used in different application. In view of this, the main objective of the present work is to analyze the influence of Aluminum Oxide filler on Fracture Toughness properties of Chopped Strand Mat (CSM) E-Glass Fiber reinforce...

متن کامل

Influence of Fiber Surface Structure on Interfacial Structure between Fiber and Matrix in Vapor Grown Carbon Fiber Reinforced Aluminum Matrix Composites

Vapor grown carbon fiber reinforced pure aluminum matrix composites were fabricated by the hot-pressing method below the melting temperature of pure aluminum. The surface structures of the vapor grown carbon fibers and the interfacial structures between the fibers and the matrix in the composite were observed. The precipitation mechanism of crystalline aluminum carbide was also investigated. An...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014